SPECIFICATIONS

PCIe-4065

PCI Express, 6½-Digit, ±300 V Digital Multimeter Device

These specifications apply to the PCIe-4065.

Contents

Definitions	1
Conditions	2
DC Specifications	2
DC System Speed Characteristics	3
DC Accuracy Specifications	3
DC Functions General Specifications	5
AC Specifications.	
AC System Speed Characteristics	6
AC Accuracy Specifications	6
AC Functions General Specifications	7
Temperature Accuracy Specifications	8
General Specifications.	
Input Protection Characteristics	10
Calibration Interval	10
Warm-Up Time Characteristics	10
Trigger Characteristics	10
Power Consumption Characteristics	11
Physical Characteristics	11
Environment	11
Operating Environment	11
Storage Environment	11
Compliance and Certifications	11
Safety	12
Electromagnetic Compatibility	12
CE Compliance	12
Online Product Certification	13
Environmental Management	13

Definitions

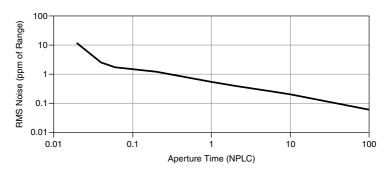
Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- Typical specifications describe the expected performance met by a majority of the models.
- Nominal specifications describe parameters and attributes that may be useful in operation.

Specifications are Warranted unless otherwise noted.

Conditions


Specifications are valid under the following conditions unless otherwise noted.

- Ambient temperature of T_{cal} ± 5 °C.¹
- Calibration interval of 1 year
- 30 minutes minutes warm-up time
- niDMM Digits Resolution property or NIDMM_ATTR_RESOLUTION_DIGITS attribute set to 6.5
- niDMM Aperture Time Units property or NIDMM_ATTR_APERTURE_TIME_UNITS attribute set to Power Line Cycles
- niDMM Aperture Time property or NIDMM_ATTR_APERTURE_TIME attribute set to 10

DC Specifications

Resolution (digits)	Reading rate (S/s), specified for 60 Hz (and 50 Hz) operation	Aperture time (NPLC)	RMS noise (ppm of range), 10 V range
61/2	0.6 (0.5)	100	0.06
	6 (5)	10	0.2
	10 (8.33)	6	0.25
5½	30 (25)	2	0.4
	60 (50)	1	0.55
	900	0.06	1.7
	1,500	0.04	2.5
4½	3,000	0.02	11.5

 $^{^{1}}$ T_{cal} = temperature at which last external calibration was performed. NI factory calibration is 23 °C ± 1 °C.

DC System Speed Characteristics

Range or function changes	10/s
Auto Range time, DC V	200 ms
Auto Range time, DC I	200 ms
Auto Range time, resistance	250 ms
Trigger latency	<1 μs
Maximum trigger rate	2.5 kHz

DC Accuracy Specifications

Table 1. DC Voltage ± (ppm of Reading + ppm of Range)

Range	Resolution	Input resistance (10 MΩ, default), nominal	24 Hr ⁴ T _{cal} ⁵ ±1 °C	90 day T _{cal} ±5 °C	1 year T _{cal} ±5 °C	Tempco ⁶ (ppm/°C)
100 mV ³	100 nV	>10 GΩ, 10 MΩ	30 + 30	65 + 35	90 + 35	5 + 2
1 V	1 μV	>10 GΩ, 10 MΩ	20 + 8	65 + 12	90 + 12	5 + 1
10 V	10 μV	>10 GΩ, 10 MΩ	15 + 7	65 + 12	90 + 12	5 + 1

² Measured on the 10 V range.

With offset nulling.

Table 1. DC Voltage ± (ppm of Reading + ppm of Range) (Continued)

Range	Resolution	Input resistance (10 MΩ, default), nominal	24 Hr ⁴ T _{cal} ⁵ ±1 °C	90 day T _{cal} ±5 °C	1 year T _{cal} ±5 °C	Tempco ⁶ (ppm/°C)
100 V	100 μV	10 ΜΩ	20 + 8	75 + 12	110 + 12	9 + 1
300 V	1 mV	10 ΜΩ	20 + 24	75 + 40	110 + 40	9 + 1

Table 2. DC Current ± (ppm of Reading + ppm of Range)

Range	Resolution	Burden voltage, typical	24 Hr ⁴ T _{cal} ⁵ ±1 °C	90 day T _{cal} ±5 °C	1 year T _{cal} ±5 °C	Tempco ⁶ (ppm/°C)
10 mA	10 nA	<60 mV	50 + 100	300 + 200	500 + 200	30 + 20
100 mA	100 nA	<0.6 V	100 + 40	300 + 50	500 + 50	30 + 5
1 A	1 μΑ	<0.35 V	500 + 60	800 + 100	1,000 + 100	65 + 10
3 A	3 μΑ	<1 V	$1,000^7 + 200$	1,200 ⁷ + 200	1,200 ⁷ + 200	65 + 20

⁴ Relative to external calibration source. DMM must remain powered on.

⁵ T_{cal} is the temperature at which last external calibration was performed. NI factory calibration is $23^{\circ}\text{C} \pm 1^{\circ}\text{C}$.

⁶ Tempco is the temperature coefficient in ppm of range per degree Celsius.

Add 650 ppm/A of reading for currents above 1.5 A.

Table 3. Resistance⁸ (4-Wire and 2-Wire) ± (ppm of Reading + ppm of Range)

Range	Resolution	Test current, nominal	24 Hr ⁹ T _{cal} ¹⁰ ±1 °C	90 day T _{cal} ±5 °C	1 year T _{cal} ±5 °C	Tempco ⁶ (ppm/°C)
100 Ω	100 μΩ	1 mA	30 + 30	95 + 40	110 + 40	8 + 3
1 kΩ	1 mΩ	1 mA	20 + 8	95 + 20	110 + 20	8 + 1
10 kΩ	10 mΩ	100 μΑ	20 + 8	95 + 20	110 + 20	8 + 1
100 kΩ	100 mΩ	10 μΑ	20 + 8	95 + 20	110 + 20	8 + 1
1 ΜΩ	1 Ω	5 μΑ	20 + 12	110 + 24	125 + 24	10 + 1
$10~\mathrm{M}\Omega^{11}$	10 Ω	500 nA	150 + 12	400 + 24	500 + 24	30 + 2
100 MΩ ¹¹	100 Ω	500 nA 10 MΩ	2,000 + 24	6,000 + 60	8,000 + 60	400 + 4

Table 4. Diode Test¹²

Range	Resolution	Test current, nominal	Accuracy
10 V	10 μV	100 μA, 1 mA (up to 3.5 V measurement for 1 mA test current)	Add 50 ppm of range and 50 ppm of reading to 10 V DC voltage specifications.

DC Functions General Specifications

Overrange	105% of range except 300 V and 3 A range
Maximum 4-wire lead resistance	Use the lesser of 10% of range or 1 $k\Omega$
DC voltage input bias current	<40 pA at 23 °C, typical
Effective Common-Mode Rejection Rat	io (CMRR)
(1 k Ω resistance in LO lead)	>150 dB second order DC noise rejection (for power-line frequency $\pm 0.1\%$), 12 PLC aperture

⁸ Specifications are for 4-wire measurements. For 2-wire measurements, perform offset nulling or add 200 m Ω to specification. For relative humidity >80%, add 100 ppm/M Ω .

⁹ Relative to external calibration source. DMM must remain powered on.

¹⁰ T_{cal} is the temperature at which last external calibration was performed. NI factory calibration is 23°C ±1°C.

¹¹ 2-wire resistance measurement only.

¹² Can be used to test p-n junctions, LEDs, or zener diodes up to 10 V.

Table 5. Normal Mode Rejection Ratio (NMRR)

Aperture time (NPLC)	DC noise rejection	Normal mode rejection (for power-line frequency ±0.1%)
1	Normal	60 dB
2	Second-order	>85 dB
10		

AC Specifications

Desired bandwidth	Recommended reading rate	Resolution (digits)
10 Hz to 100 kHz	1 S/s	6½
100 Hz to 100 kHz	10 S/s	5½
500 Hz to 100 kHz	100 S/s	4½

AC System Speed Characteristics

Range or function changes	10/s
Trigger latency	<1 μs
Maximum trigger rate	2.5 kHz

AC Accuracy Specifications

Note All AC accuracy specifications apply to signal amplitudes greater than 2% of

Table 6. AC Voltage (% of Reading + % of Range)

Range (peak voltage)	Frequency	24 hr ¹³ T _{cal} ±1 °C	1 year ¹⁴ T _{cal} ±5 °C	Tempco ¹⁵ (%/°C)
200 mV (± 320 mV),	10 Hz to 40 Hz	1.5 + 0.04	2 + 0.05	0.01 + 0.003
2 V (± 3.2 V), 20 V (± 32 V), 300 V (± 425 V)	> 40 Hz to 20 kHz	0.2 + 0.04	0.2 + 0.05	0.01 + 0.003
	> 20 kHz to 50 kHz	0.3 + 0.04	0.3 + 0.05	0.01 + 0.003
	> 50 kHz to 100 kHz	1.5 + 0.08	1.5 + 0.08	0.02 + 0.005

Table 7. AC Current (% of Reading + % of Range)

Range (peak current)	Frequency	24 hr ¹³ T _{cal} ±1 °C	1 year ¹⁴ T _{cal} ±5 °C	Tempco ¹⁵ (%/°C)
10 mA (± 16 mA),	10 Hz to 40 Hz	1.6 to 0.05	2.1 + 0.05	0.015 + 0.03
100 mA (± 160 mA), 500 mA (± 780 mA), 3 A (± 4.25 A)	> 40 Hz to 5 kHz	0.3 + 0.05	0.3 + 0.06	0.015 + 0.03

Table 8. High Crest Factor Additional Error¹⁶

Crest factor	Additional error (% of reading)
1 to 3	0.05%
3 to 4	0.1%
4 to 5	1% (for frequencies above 2 kHz)

AC Functions General Specifications

Input impedance	$10~\text{M}\Omega$ in parallel with 200 pF, nominal
Input coupling	AC coupling
Maximum Voltz-Hertz product	$3 \times 10^7 \text{ V-Hz}$
Maximum DC voltage component	250 V

 $^{^{13}}$ T_{cal} is the temperature at which last external calibration was performed. NI factory calibration is 23°C ±1 °C.

¹⁴ Use the 1 Year specification to calibrate on a 90-day cycle.

¹⁵ Tempco is the temperature coefficient. Tempco values are valid within the device's ambient temperature range.

Applicable for non-sinewave signals up to the rated peak voltage, current, or bandwidth.

105% of range except 300 V, 3 A range

Temperature Accuracy Specifications¹⁷

Table 9. Thermocouple Temperature Accuracy Specifications (°C)

Туре	Range	1 year T _{cal} ±5 °C		Tempco	Resolution
		With Simulated Ref. Junction ¹⁸	With PXI-2527 ¹⁹	(°C _{reading} /°C _{DMM}) ²⁰	
J	-150 to 1200	0.3	1.0	0.03	0.1
	-210 to -150	0.4	1.2	0.03	0.1
K	-100 to 1200	0.4	1.0	0.03	0.1
	-200 to -100	0.4	1.5	0.03	0.1
N	-100 to 1300	0.3	1.0	0.03	0.1
	-200 to -100	0.6	1.5	0.03	0.1
Т	-100 to 400	0.3	1.0	0.03	0.1
	-200 to -100	0.4	1.5	0.03	0.1
Е	-150 to 1000	0.2	1.0	0.03	0.1
	-200 to -150	0.3	1.5	0.03	0.1
R	300 to 1760	0.6	1.8	0.06	0.1
	-50 to 300	1.4	1.9	0.06	0.1
S	400 to 1760	0.7	1.8	0.06	0.1
	-50 to 400	1.3	1.8	0.06	0.1

¹⁷ T_{cal} = temperature at which last external calibration was performed. NI factory calibration is 23°C ±1 °C. For total measurement accuracy, add temperature probe error.

¹⁸ Using simulated reference junction.

¹⁹ Includes PXI 2527 with TB 2627 with a typical 0.5 °C CJC error and a typical thermal EMF offset of 2.5 μ V for CJC temperatures between 15 °C and 35 °C. Add an additional 0.5 °C uncertainty when CJC is in the range 0 °C to 15 °C or 35 °C to 50 °C.

²⁰ Tempco = Temperature coefficient, expressed in degrees of measurement uncertainty per degree change in DMM instrument operating temperature.

Table 9. Thermocouple Temperature Accuracy Specifications (°C) (Continued)

Туре	Range	1 year T _{cal} ±5 °C		Tempco	Resolution
		With Simulated Ref. Junction ¹⁸	With PXI-2527 ¹⁹	(°C _{reading} /°C _{DMM}) ²⁰	
В	1100 to 1820	0.6	1.8	0.09	0.1
	400 to 1100	1.4	1.9	0.09	0.1

Table 10. RTD²¹ Temperature Accuracy Specifications (°C)

Range	1 year T _{cal} ¹⁸ ±5 °C	Tempco/°C ²²	Resolution
-200 to 600	0.17	0.011	0.01

Table 11. Thermistor Temperature Accuracy Specifications (°C)

Range	1 year T _{cal} ¹⁸ ±5 °C	Tempco/°C ²²	Resolution
-80 to 150	0.08	0.002	0.01

General Specifications

Maximum common-mode voltage	300 V AC _{rms} or DC
Measurement Category	II

Caution Do not use this device for connection to signals or for measurements within Measurement Categories III or IV.

¹⁸ Using simulated reference junction.

¹⁹ Includes PXI 2527 with TB 2627 with a typical 0.5 °C CJC error and a typical thermal EMF offset of 2.5 μV for CJC temperatures between 15 °C and 35 °C. Add an additional 0.5 °C uncertainty when CJC is in the range 0 °C to 15 °C or 35 °C to 50 °C.

²¹ RTD with $R_0 = 100 \Omega$ Pt3851 RTD in a 4-wire configuration, using lowest possible resistance range for each temperature.

²² Tempco is the temperature coefficient, expressed in degrees of measurement uncertainty per degree change in DMM instrument operating temperature.

Input Protection Characteristics

DC I and AC I	3.15 Amp, fused F 3.15 A 250 V, fast-acting user-replaceable fuse
Resistance, diode	Up to 300 V DC
DC V, AC V	Up to 300 V DC, 300 V AC _{rms} , 450 V AC peak

Fuse When this fuse symbol is marked on a device, take proper precautions.

Hazardous Voltage This icon denotes a warning advising you to take precautions to avoid electrical shock

Calibration Interval

Calibration interval 1 year recommended

Warm-Up Time Characteristics

Warm-up time 30 minutes to rated accuracy

Trigger Characteristics

Input triggers	
Types	Trigger, Sample Trigger (programmable edge)
Sources	Auxiliary connector (AUX I/O connector)
Minimum pulse width	200 ns
Max samples per trigger	2.1×10^9
Trigger delay	0 to 149 s
Logic level	5 V TTL, LVTTL
Output triggers	
Types	Measurement Complete (programmable edge)
Destinations	Auxiliary connector (AUX I/O connector)
Pulse width	1 μs
Logic level	3.3 V

Note The AUX I/O connector is not isolated. It is not referenced to your measurement circuit. The connector is referenced to the ground of your chassis. The digital signals on this connector should not operate beyond -0.5 to 5.5 V of your chassis ground. The trigger signals are TTL-compatible.

Power Consumption Characteristics

< 3 W from PCI Express motherboard Power consumption

Physical Characteristics

y cc cccc.	
Dimensions	One slot, PCI Express module
	$18.3 \text{ cm} \times 2.0 \text{ cm} \times 12.0 \text{ cm}$
	$(7.2 \text{ in.} \times 0.8 \text{ in.} \times 4.7 \text{ in.})$
Weight	325 g (11.5 oz)

Cleaning Statement

Caution Clean the hardware with a soft, nonmetallic brush. Make sure that the hardware is completely dry and free from contaminants before returning it to service.

Environment

Maximum altitude	2,000 m (at 25 °C ambient temperature)
Pollution Degree	2
Indoor use only.	

Operating Environment

Ambient temperature range	0 to 40 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
Relative humidity range	10% to 90%, noncondensing

Storage Environment

Ambient temperature range	-40 °C to 70 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.)
Relative humidity range	5% to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Compliance and Certifications

Caution You can impair the protection provided by the PCIe-4065 if you use it in a manner not described in this document.

Caution This product is intended for use in industrial locations. As a result, this product may cause interference if used in residential areas. Such use must be

avoided unless the user takes special measures to reduce electromagnetic emissions to prevent interference to the reception of radio and television broadcasts.

Safety

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online* Product Certification section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity •
- AS/NZS CISPR 11: Group 1, Class A emissions •
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the Online Product Certification section.

CE Compliance ()

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/ certification, search by model number or product line, and click the appropriate link in the Certification column

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers

For additional environmental information, refer to the Minimize Our Environmental Impact web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.

电子信息产品污染控制管理办法(中国 RoHS)

(A) 中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物 质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs china。 (For information about China RoHS compliance, go to ni.com/environment/rohs china.)

Information is subject to change without notice. Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: *HelpvPatents* in your software, the patents.txt file on your media, or the *National Instruments Patent Notice at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015.

© 2006—2017 National Instruments. All rights reserved.